475 research outputs found

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security

    Attribute-based secure messaging in the public cloud

    Get PDF
    Messaging systems operating within the public cloud are gaining popularity. To protect message confidentiality from the public cloud including the public messaging servers, we propose to encrypt messages in messaging systems using Attribute-Based Encryption (ABE). ABE is an one-to-many public key encryption system in which data are encrypted with access policies and only users with attributes that satisfy the access policies can decrypt the ciphertexts, and hence is considered as a promising solution for realizing expressive and fine-grained access control of encrypted data in public servers. Our proposed system, called Attribute- Based Secure Messaging System with Outsourced Decryption (ABSM-OD), has three key features: enabling expressive and fine-grained access control of encrypted messages by users, supporting outsourced decryption to the cloud while without compromising confidentiality of decrypted messages, and allowing server-aided revocation to provide effective and instant user revocations

    Some remarks on fair exchange protocol

    Get PDF
    Abstract. Fair exchange turns out to be an increasingly importanttopic due to the rapid growth of electronic commerce. An exchange is deemed to be fair if at the end of exchange, either each party receives the expected item or neither party receives any useful information about the other's item. Several protocols for fair exchange have been proposed in recent years. In this paper, we rst examine a newly published fair exchange protocol and point out its aws and weaknesses. We then put forward a more e cient and secure protocol and give an informal analysis

    Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin

    Full text link
    The incipient separation induced by the shock wave turbulent boundary layer interaction at the sharp fin is the subject of present study. Existing theories for the prediction of incipient separation, such as those put forward by McCabe (1966) and Dou and Deng (1992), can have thus far only predicting the direction of surface streamline and tend to over-predict the incipient separation condition based on the Stanbrook's criterion. In this paper, the incipient separation is firstly predicted with Dou and Deng (1992)'s theory and then compared with Lu and Settles (1990)' experimental data. The physical mechanism of the incipient separation as induced by the shock wave/turbulent boundary layer interactions at sharp fin is explained via the surface flow pattern analysis. Furthermore, the reason for the observed discrepancy between the predicted and experimental incipient separation conditions is clarified. It is found that when the wall limiting streamlines behind the shock wave becomes\ aligning with one ray from the virtual origin as the strength of shock wave increases, the incipient separation line is formed at which the wall limiting streamline becomes perpendicular to the local pressure gradient. The formation of this incipient separation line is the beginning of the separation process. The effects of Reynolds number and the Mach number on incipient separation are also discussed. Finally, a correlation for the correction of the incipient separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure

    Nonlinear Dynamical Stability of Newtonian Rotating White Dwarfs and Supermassive Stars

    Full text link
    We prove general nonlinear stability and existence theorems for rotating star solutions which are axi-symmetric steady-state solutions of the compressible isentropic Euler-Poisson equations in 3 spatial dimensions. We apply our results to rotating and non-rotating white dwarf, and rotating high density supermassive (extreme relativistic) stars, stars which are in convective equilibrium and have uniform chemical composition. This paper is a continuation of our earlier work ([28])

    Quantum algebra in the mixed light pseudoscalar meson states

    Full text link
    In this paper, we investigate the entanglement degrees of pseudoscalar meson states via quantum algebra Y(su(3)). By making use of transition effect of generators J of Y(su(3)), we construct various transition operators in terms of J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The entanglement degrees of both the initial state and final state are calculated with the help of entropy theory. The diagrams of entanglement degrees are presented. Our result shows that a state with desired entanglement degree can be achieved by acting proper chosen transition operator on an initial state. This sheds new light on the connect among quantum information, particle physics and Yangian algebra.Comment: 9 pages, 3 figure

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control

    Get PDF
    Cleavage of transfer (t)RNA and ribosomal (r)RNA are critical and conserved steps of translational control for cells to overcome varied environmental stresses. However, enzymes that are responsible for this event have not been fully identified in high eukaryotes. Here, we report a mammalian tRNA/rRNA-targeting endoribonuclease: SLFN13, a member of the Schlafen family. Structural study reveals a unique pseudo-dimeric U-pillow-shaped architecture of the SLFN13 N'-domain that may clamp base-paired RNAs. SLFN13 is able to digest tRNAs and rRNAs in vitro, and the endonucleolytic cleavage dissevers 11 nucleotides from the 3'-terminus of tRNA at the acceptor stem. The cytoplasmically localised SLFN13 inhibits protein synthesis in 293T cells. Moreover, SLFN13 restricts HIV replication in a nucleolytic activity-dependent manner. According to these observations, we term SLFN13 RNase S13. Our study provides insights into the modulation of translational machinery in high eukaryotes, and sheds light on the functional mechanisms of the Schlafen family
    corecore